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Abstract.4
I/O is becoming an increasing bottleneck on large-scale computer systems. We present a highly5

scalable lossy data compression algorithm with controllable committed error based on an a priori6
estimator. The scientific data field is compacted via the discrete Chebyshev transform (DCT),7
truncated at a level within a user-specified tolerance, and subsequently compressed before writing to8
disk by using a version of Huffman encoding. The flexibility of the DCT transform and computational9
efficiency doubled by the a priori error estimator allows a dynamic compression ratio which can10
achieve as high as 97% compression for data visualization even in cases as complex as fully developed11
turbulent flow. In resilience problems however, the compression ratio is problem dependent. The12
algorithm is implemented in the spectral-element code Nek5000 and tested on highly turbulent large-13
scale simulation data of up to 10 billion degrees of freedom. The implementation via tensor products14
is highly efficient, leading to a decrease of flops in matrix-vector multiplications in three dimensions15
from O(N6) down to O(N4).16
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1. Introduction. Although the main challenge of high performance computing19
is to develop algorithms that scale well on increasingly many processors, the issue of20
handling and storing the generated large data sets is becoming a significant part of21
the computation. The performance in the various levels of the memory hierarchy is22
steadily diverging, making computations more memory bound and potentially I/O23
bound. Whereas cache access speeds have increased significantly, I/O speeds have24
not been able to keep up the pace. This work focuses on reducing the amount of data25
that has to be written to disk by applying lossy data compression. The compression26
ratio is selected optimally through the implementation of an a priori error estimator.27

Data compression is a popular concept in image processing, where resolution and28
high frame rate have an immediate impact on the viewer, whereas the audience of29
scientific data compression is far less wide. One of the ideas imported from image30
processing was the discrete cosine transform, which has been the ground algorithm31
for JPEG image compression since the early 1970s [1]. More recently, same ideas32
were used in computational fluid dynamics simulations [16], but initially limited to33
Cartesian grids, extending later to nonconformal meshes.34

Compression algorithms can be roughly classified as lossy, where data loss is35
allowed within given bounds, and lossless, where no error in incurred but the com-36
pression ratio is lower. The Discrete Chebyshev Transform, also known as Discrete37
Cosine Transform, and to which we shall refer here to as DCT, falls into the category38
of lossy compression algorithms, by which the energy of the signal is compacted in39
a convenient way that allows for optimal truncation. Other strategies in the same40
category rely on the discrete wavelet transform (DWT) [5, 18, 17] or floating point41
compression [9, 14]. Another approach for data compression of time varying sequences42
relies on building reduced order models, via proper orthogonal decomposition (POD)43
[13], [19]. This approach exploits the dynamics of the simulation. However, it may44
require a time series and the dynamics of the system may not always be properly45
captured as noted in [13]. These startegies can be complemented by a fast lossless46
compression algorithm [3] that instead of truncating, maps the data in such a way47
that the representation of probable sequences are shorter than the one of improbable48
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sequences.49
In the present work DCT was chosen for its exceptional energy compactness prop-50

erties as well as being computationally amenable. Although both DCT and DWT51
address the nature of the data from a physical/mathematical perspective, DCT is far52
easier to implement than DWT which tends to be problem dependent. Essential in53
any lossy compression algorithm is to have control over the error, and most works54
focus on the error in max or rms norm, as in [10]. Here, however, we focus on the L255
norm on curvilinear grids which under the DCT transform leads to an easy to handle56
expression for the truncation tolerance.57

Gains in data representation due to compression become significant at large scales58
and high dimensions and affect not only disk storage but also I/O speed. When used59
solely for visualization purposes we can achieve a gain of 97% in compression ratio;60
however, we intend to use this technique for a wider range of applications, such as61
adjoint-based optimization [15], and to this end we have developed an a priori error62
estimator that gives a clear account of how much data we can afford to truncate63
in order to restore the solution with a given accuracy. Once the data is truncated,64
the compression is performed on the actual bits of data. This is achieved through a65
Huffman encoding that specifically targets the truncation symbol, here 0, as the one66
with highest probability. The approach of the algorithm requires a scalable algorithm67
that under optimal conditions increases I/O speeds in addition to decreasing file sizes.68

This paper starts with a description of the data representation (section 2), fol-69
lowed by an analysis of the properties of DCT (section 3). These properties of the70
DCT lead to the derivation of the a priori error estimator. Concluding the theoretical71
aspects of this work we outline the bitwise encoding strategy (section 4). The results72
on three cases of the highest degree of difficulty are presented in section 5, together73
with studies of the increase in I/O performance. In section 6 we briefly summarize74
our conclusions.75

2. Data Representation of the Spectral-Element Method. The spectral-76
element method has a two-layered data representation, at the element level and inside77
an element, which are populated with a set of points, roots of orthogonal polynomi-78
als. Spectral-element methods may differ in their choice of element representation:79
hexahedral, tetrahedral, and even hexagonal, or hybrids thereof. In terms of the spec-80
tral representation inside each element, the most popular choices are Gauss Legendre81
Lobatto points (GLL) [4] or Chebyshev points [2]. The code Nek5000 [6], which we82
used to showcase our implementation, is based on GLL spectral grids and hexahedral83
elements; however, for completeness we also tested the method on Chebyshev grids.84

The entire domain Ω is thus split into elements Ωe. The solution is required to be85
continuous across each element boundary, class C0, and admits continuous derivatives86
within an element, class C1; for details see [4].87

Consider an element Ωe with inner data points x = (x1, x2, x3). The solution can88
be represented as a linear combination of orthogonal polynomials89

(1) u(x)|Ωe
=

∑
i,j,k

ueijkφi(x1)φj(x2)φk(x3) ,90

where φ are Lagrange polynomials and the data points x are GLL points. Since
polynomials φ are orthogonal and also evaluate to unity at each grid point, we may
write via tensor products

u|Ωe ≡ (Ix ⊗ Iy ⊗ Iz)ue ,
2
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Figure 1: Spectral element mesh, 3 elements with 5 Gauss-Legendre-Lobatto points
per element.

which is an identity. Although redundant in many ways, it gives an insight into
the tensor product representation. Furthermore the solution over the entire mesh is
represented as

u(x)|Ωe
=

M∑
j=1

ujδje ,

where δje is the Kronecker delta function91

(2) δje =
{

1, j = e

0, j 6= e
.92

In Figure 1 we can distinguish between these two levels of representation, element-93
wise and GLL inner points. The parallelism of Nek5000 is always performed at the94
element level; in other words, GLL points interior to an element can never be split95
between two processors.96

Without detailing on the numerical methods based on a variational formulation,
we note that the spectral-element method, just like the finite-element method, does
not seek a point-wise discrete solution u that approximates the analytical solution ū,
but instead seeks a solution that minimizes the scalar product∫

Ω
(u− ū)v

for all test functions v in a given polynomial space tailored to the problem at hand.97
With this in mind, a curvilinear element in Nek5000 (be it a part of either a structured98
or unstructured mesh) is mapped to a reference element where the spectral integration99
quadrature is defined. If we assume that there exists a mapping from an element Ωe100
to a reference element Ω̂e,101

x(r) : Ωe → Ω̂e ,

and that any isoparametric deformation x is

x(r) =
∑
ijk

xijkφi(r1)φj(r2)φk(r3) ,

3

This manuscript is for review purposes only.



then a data field over the curvilinear mesh of discrete points x takes the form

u(x) =
∑
ijk

uijkφi(r1)φj(r2)φk(r3) ,

with r1, r2, r3 coordinates of the reference element, as illustrated in Figure 1.102
However, if we are to compute derivatives and integrals of fields u, we need to103

take into account the mapping x(r). For this work we are interested only in mappings104
and the L2 norm, namely,105

(3)
∫

Ωe

u2 dΩe =
∫

Ω̂e

u2J(r) dΩ̂e ,106

with J being the Jacobian of the mapping x(r):

J(r) = det(Xr), (Xr)ij = ∂xi
∂rj

, i, j = 1, . . . , d .

3. Data Truncation Algorithm. The truncation of the solution fields is per-107
formed on any type of data (e.g., velocity, pressure, temperature) in the same fashion108
since from the compression point of view the single most important issue is how over-109
resolved or underresolved the data is. For vector fields, such as velocity, we perform110
the truncation in each dimension independently.111

3.1. Discrete Cosine Transform. The discrete cosine transform represents112
the amplitude of a signal in spectral space, by being the real part of a Fourier trans-113
form (the remainder, the discrete sine transform, representing the phase). In the114
current context, however, we do not make use of the connection between DCT and115
the fast Fourier transform, but rather by the correspondence of the DCT to the dis-116
crete Chebysev transform, or the Karhunen-Loève (KL). In [12], it was shown that117
DCT is the optimal KL transform, having the best energy compaction efficiency for118
strongly correlated Markov processes.119

Fast-forwarding to the core ideas of this work, we show that the DCT as applied120
to a signal u(x) in a single dimension yields121

(4) w(xj) = cj

N∑
i=1

u(xi) cos
[ π

2N (2i− 1)(j − 1)
]
, j = 1, . . . , N122

and123

(5) cj =
{√

1/N, j = 1,√
2/N, 2 ≤ j ≤ N.

124

The DCT transform can also be represented in matrix form as125

(6) Tij = cj cos
[ π

2N (2i− 1)(j − 1)
]
,126

leading to w = Tu, where T is an N ×N matrix.127

4
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Properties of the DCT transform.128
1. Orthogonality: TT T = T TT = I, where I is the identity matrix.129
2. T−1 = TT : thus the inverse DCT transform IDCT is the transpose of the130

DCT.131
3. Energy preservation: wT w = (Tu)T (Tu) = uT TT Tu = uT u.132
4. Energy compactness.133
5. Separability: the three-dimensional DCT (let us define it T 3(u)) is a sequence134

of one-dimensional DCT transforms; that is, T 3(u) = (T ⊗ T ⊗ T )u.135
To restore a data field from DCT space to the real space, we can apply the inverse

u = T−1w .

Given that T−1 = TT is sufficient to compute only the direct transform, the inversion136
process follows naturally, via transposition.137

3.2. Prerequisites. To assess whether a DCT-based implementation may yield138
satisfactory results, and to compare with the JPEG approach, we first performed139
a short study of a synthetically generated signal of high frequency on the reference140
element [−1, 1]: here u(x, y) = sin(4x) cos(2y) + cos(5x) sin(5y). To this end we141
applied the DCT transform to the signal represented on a Chebyshev grid, on a142
Gauss-Legendre-Lobatto grid, and on an equidistant grid. We sought to determine143
what compression ratio can be achieved such that we can restore the solution with144
a fixed error. Here we considered ε = 10−6, for increasing grid sizes. Note that a145
grid of N equidistant discrete points corresponds to polynomial order N − 1 on GLL146
and Chebyshev grid representations. In Figure 2a one can observe that in regions147
where the signal is underresolved (up to polynomial order ≈10) the behavior between148
grids does not differ; however, with increasing resolution one can truncate more on149
Chebyshev grids than on any others, followed by GLL grids and lastly by equidistant150
grids. We note that different signals may yield different results: in some scenarios151
the Chebyshev grids and GLL grids have a similar trend whereas equidistant grids152
preserve a very slow decay of the error.
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(a) For a fixed error (10−6) comparing com-
pression ratio vs grid size/polynomial order
(N): green: equidistant grid, blue: GLL grid,
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(b) Color plot of the error on a Chebyshev
grid, contour plot of various magnitudes, in
direction of arrow - increasing accuracy (error
from 10−4 to 10−10).

Figure 2: Two-dimensional error assessment of a synthetically produced signal.
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For more insight into the qualitative behavior of DCT, now only on Chebyshev154
grids, we generated a set of compression ratios and polynomial orders to find the155
errors in each regime as illustrated in Figure 2b. Since our code is a GLL based code,156
we had to map the data to Chebyshev grids, prior to applying the DCT (although157
this can be done in a single step, as will be shown). However, comparative studies158
on real three-dimensional cases of fully turbulent flow did not yield great differences159
between GLL and Chebyshev grids, since the signal is already packed on the mesh by160
design.161

3.3. Tensor Products. The separability property of the DCT transform makes162
it an efficient tool from a computational viewpoint. Because of separability it can be163
applied on a higher-dimensional field as a tensor product of one-dimensional ones,164
thus lowering the computational costs of any evaluation.165

Consider A : RM → RM , B : RN → RN , C : RP → RP .

w = (A⊗B)u = AuBT .

In a three dimensional setup this translates into

w = (A⊗B ⊗ C)u = (A⊗B)uCT = AuCTBT .

In index notation the two dimensional product w = (A⊗B)u = AuBT can be written
as

wij =
N∑
k=1

N∑
l=1

aikuklblj , B = bjl .

This amounts to O(N3) operations as O(N4) if the matrix A⊗B is set up explicitly.166
For the three-dimensional case the advantage is even bigger, yielding167

(7) wijk =
N∑
l=1

N∑
m=1

N∑
p=1

ailulmpcpkbmj , B = (b)jm,j,m=1,...N , C = ckp,k,p=1,...N .168

Analyzing the expression in (7), we note that each matrix-matrix product neces-169
sitates N3 flops. We have two such products, and the last one has to be performed N170
times, leading to a total count of N3+N3+N4. This reduces the evaluation costs from171
O(N6) operations (if the entire matrix is explicitly constructed) to O(N4) operations.172
This aspect of separability, which allows for tensor product representations, becomes173
important with increasing dimension since the evaluation times go from O(N2d) to174
O(Nd+1), which is clearly more advantageous for higher dimensions d. Now we apply175
the DCT transform T in all three directions and denote them, respectively as Tx, Ty,176
Tz, although Tx = Ty = Tz = T , we have177

(8) w = (Tx ⊗ Ty ⊗ Tz)u = TxuTTz TTy178

and in reverse
u = (Tx ⊗ Ty ⊗ Tz)w = TTx wTzTy .

Furthermore if we want to map the signal to a Chebyshev grid, it also suffices to
have one forward interpolation operator, denoted Mgc, from the GLL grid to the
Chebyshev grid. Now the transform T is applied not to u but to Mgcu and in one
dimension results in

w = TMgcu ,

while in three dimensions the rule in (8) remains unchanged since T → TMgc.179

6
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3.4. A Priori Error Estimator. The truncation of the signal (e.g. velocity180
field) occurs in DCT space after the signal has been decorrelated. However, in order181
to maintain control over the error incurred through the truncation of the flow field,182
it is necessary to devise an a priori error estimator that guarantees that the data can183
be retrieved with a desired accuracy. As will be shown shortly the L2 norm in DCT184
space is equivalent to the L2 norm in real space; although the norm is imposed locally,185
it is also satisfied globally.186

Local to global error. The entire domain Ω consists of elements Ωe, such that187
Ω = ∪eΩe. The global velocity field is therefore split into its local restrictions ue =188
u|Ωe . Because of the nature of our computational domains, which are curvilinear189
with nonuniform elements, we need to consider the norm weighted by V =

∫
Ω dΩ, the190

volume of the domain, or element, namely,191

(9) ||u|| =

√∫
Ω u2 dΩ∫

Ω dΩ
=

√
||u||2L2

V
.192

By virtue of the spectral element domain decomposition and using u|Ωe = ue we can
write the global L2 norm as a sum of local norms:

||u||2L2
=

∑
e

||ue||2L2
.

This translates in terms of the norm weighted by the volume as

||u||2L2

V
= 1
V

∑
e

||ue||2L2

Ve
Ve ,

which once again with the current definition of the norm, (9), is193

(10) ||u||2 = 1
V

∑
e

||ue||2Ve .194

Regarding the truncation error incurred by ũ, if we impose a threshold on the global195
solution ||u − ũ|| < ε, then from (10) it is sufficient to impose a similar local norm196
||ue − ũe|| < ε.197

Truncation in DCT space. Assuming a spectral discretization in Gauss-Legendre-
Lobbatto points, with weights gathered in the mass matrix B, the L2 norm in one
dimension becomes

||u||L2 =

√∫
Ω
u2 dΩ ≈ ūTBū .

For clarity we denote here as ū the discrete correspondent of the velocity field u. Now
if we transfer the field ū into spectral space via DCT, we have w̄ = T ū:

||w||L2 =

√∫
Ω
w2 dΩ ≈ w̄TBw̄ = w̄TTTBTw̄ .

From the properties of DCT we have that TTT = I; and since the mass matrix is198
a diagonal matrix, we also have TTBT = B. This reasoning is performed in one199
dimension; however, because of the separability of DCT, it can be easily transported200
to a higher dimension via tensor products.201

In conclusion, although the error should be cautiously measured locally in DCT202
space, the result is identical to that in real space.203

7
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4. Compression Algorithm. The number of entries within one spectral ele-
ment is M = P d, where d is the spatial dimension and P the polynomial order. Based
on DCT and the a priori error estimator, we are able to truncate K entries of u by
setting each one to zero. This leaves us with N = M −K nonzero entries. We assume
that each entry takes m bits in its binary encoding e : R→ Bm, where

x 7→ [b0, b1, . . . , bm−2, bm−1]2︸ ︷︷ ︸
m bits

,

with B being the space of binary numbers. One example of such an encoding is204
the binary numbers representation where x =

∑m−1
i=0 bi · 2i. With double precision205

floating-point number encoding as defined by IEEE have, we m = 64 bits. We want a206
compression algorithm that is efficient in terms of both performance and compression207
ratio and, flexible with regard to the encoding e. Without loss of generality we assume208
that e(0) = [0, . . . , 0]2. We propose the compression encoding h:209

h([b0, b1, . . . , bm−2, bm−1]2) =



[0]2︸︷︷︸
1 bit

, if b0 = · · · = bm−1 = [0]2 ,

[1, b0, b1, . . . , bm−2, bm−1]2︸ ︷︷ ︸
m+1 bits

, else .
210

The entries of value zero are all compressed by using the single bit 0 for their211
encoding. Every other value is being prepended with the single bit 1. It is a simplified212
Huffman encoding where we distinguish only two types of symbols: the zeros that are213
being compressed and the nonzeros. Of course, to make this encoding achieve high214
compression ratios, we assume that zero is by far the most prevalent number.215

We define the optimal zero compression ratio as K
M , where all the zeros have zero

size. Using our encoding, we end up with K + M · (m + 1) and thus a compression
ratio of

K + (M −K) · (m+ 1)
M ·m

.

For K = 0, we end up with an increase of M bits, whereas with K = M our highest216
compression ratio is 1

m . It follows that this encoding is useful only if K > M/m. The217
complexity of this encoding is linear in the number of total grid points n totalling to218
O(n · d) with d being the dimension.219

4.1. Compressed I/O in Nek5000. I/O has a wide range of use cases, includ-220
ing visualization, resilience, and adjoint checkpointing. It represents the lowest layer221
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of the memory hierarchy where the data is written on permanent storage devices (e.g.,222
disks). Because it is the last memory layer, it generally has the slowest bandwidth and223
the highest latency of all the memories involved in the computation. This bottleneck224
poses great challenges for large-scale computer systems, and the amount of output225
data should be selected wisely.226

One way of addressing this bottleneck is to adapt the hardware to the access227
patterns. Burst buffers, for example, assume short peaks of high disk access. Another228
alternative is to compress and reduce the amount of data. In Nek5000, the data229
consists in its simplest form of the velocity vector field and the pressure scalar field.230
Because of the continuity we assume that these two fields are an excellent candidate231
for the DCT truncation described in section 3, while ignoring the effects of shocks.232

The I/O implementation of Nek5000 is shown in Figure 3. It distinguishes I/O233
ranks as a subset of compute ranks. For brevity reasons we focus only on the write234
operation, which is fundamentally similar to reads and more frequent. After a write235
operation is initiated, every compute rank sends its data to the I/O ranks, which then236
dispatch the data to the system I/O API (i.e., fwrite).237

Our compression algorithm is made up of two stages. One is the truncation238
relying on DCT (see section 3), and the other is the actual compression of the zeros239
created by the truncation (see section 4). To achieve maximum scalability, we apply240
the truncation on the compute nodes. Consequently, it would also be desirable to241
apply the compression on the compute nodes. However, this design raises flexibilty242
concerns. One data segment i is compressed from full-length ni to the compressed-243
length ci and written out serially segment after segment. To know the length ci of the244
compressed segments, we also store the length ci at the beginning of each compressed245
data segment. If the data is compressed on the compute nodes, the I/O nodes collect246
the various compressed data segments together with the prepended ci’s and write them247
to disk. Nek5000 is able to be run with different numbers of nodes using the same data.248
Let us assume that data has been compressed and written using n compute nodes.249
If this data is read and then distributed, for example, among 2n compute nodes, this250
distribution becomes nontrivial, because the compressed fragments cannot easily be251
split up in a scalable way. Hence, we decided to do the data compression only on252
the I/O nodes. In that case, and for the same reason, the compressed data must be253
read with the same number of I/O nodes as it has been written. With this process of254
course, the compression scales only with the number of I/O nodes, which, as we will255
see later, may lack scalability, depending on the architecture.256

5. Implementation and Results. The current work is independent of the na-257
ture of the data fields. However, compression is applied here to flow fields from258
turbulent simulations. This choice is justified by our numerical experiments which259
showed that fully turbulent flow fields are the hardest to compress since the signal260
usually has high frequencies and is fully resolved. On the other hand signals that261
are overresolved can be highly compressed, and this implies fields stemming from262
Reynolds-averaged Navier-Stokes, laminar flows, and so forth.263

Both cases selected here are results of simulations using the incompressible Navier-264
Stokes, which in nondimensional formulation are given by265

∂u
∂t

+ u · ∇u = −∇p+ 1
Re
∇2u + f(11)266

∇ · u = 0 ,267

where u is the flow velocity, p the pressure, and Re the Reynolds number given as268
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Re = UD/µ (µ being the viscosity).269

Algorithm 1 Parallel compression on an already partitioned mesh with nel elements
each.

procedure Setup
T ← DCT setup 1d(p)

end procedure
procedure Truncate

5: for 0 ≤ k < nel do
uDCT,k = T · uk · TT · TT
sort(uDCT,k)

utrunc,k = uDCT,k > ε
end for

10: end procedure
procedure Compress

if IOnode then
for q ∈ IOchildren do

Recv(utrunc,q)
15: ucompress =huff encode(utrunc)

output(ucompress)
end for

else
Send(utrunc,IOparent)

20: end if
end procedure

5.1. Algorithm. Combining the DCT truncation (see section 3), the Huffman-270
based compression (see section 4), the error estimator (see subsection 3.4), and the I/O271
layout in Nek5000 (see subsection 4.1), we derive the parallel algorithm in Algorithm 1272
and its implementation. The parallel algorithm is described on an already partitioned273
data u, each process executing it locally.274

The Setup procedure is called once at the startup of Nek5000. It creates the DCT275
operator T, which depends on the element grid points (line 2) and ultimately only on276
the polynomial order p=N-1. The operator T is of size N·N, and thus its implementation277
via tensor products renders its computation extremely fast.278

The Truncate and Compress procedures are called one after another each time an279
output is initiated. Every process iterates over every element k and applies the three-280
dimensional DCT using the tensor product implementation of T (line 6). Subsequently,281
the resulting DCT transformed array uDCT is sorted and then truncated based on the282
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error estimator (line 8). No communication is involved in this process, making it283
embarrassingly parallel.284

In Compress the Huffman encoding is applied at the I/O node level. If the process285
is an I/O node (see Figure 3), it iterates over all its children and receives the truncated286
data of every child q (line 14). It then applies the Huffman encoding, as seen in287
section 4, and writes the output of child q to disk. If the process is not an I/O node it288
just sends the data to its I/O parent IOparent (line 19). The number of messages and289
thus its latency depends on the number of children in IOchildren (line 13). Assuming290
this ratio is constant for a given system and architecture, the compression step is also291
embarrassingly parallel at the I/O node level.292

The uncompressed I/O uses the same communication structure for collection the293
data as in the routine COMPRESS. To achieve a speedup in the I/O using the com-294
pression, the for loop in lines 13-17 has to become faster than in the uncompressed295
case. All the operations in that loop, Recv, huff encode, and output are supposed to296
scale linearly with the data size. Thus, if the performance gain of the compression in297
output is high enough to account for the additional time needed for the encoding, we298
experience a speedup. These parameters are highly system dependent. huff encode299
is a highly memory bandwidth bound routine, whereas output is I/O bound. The300
current development in diverging memory access and I/O speeds gives us confidence301
that future architectures will increase the benefits of our approach.302

5.2. Results. The first case is a three-dimensional direct numerical simulation303
of flow past an airplane wing [7] at the high Reynolds number of 400.000 based on304
freestream velocity and cord length. To fully resolve the turbulent scales requires 3.2305
billion grid points (1.847.664 elements), making this a typical large-scale computing306
application. This flow case, as seen in Figure 5a, is not fully turbulent in the en-307
tire domain, and regions with less fluctuations can be compressed more than their308
counterparts.309

The second case, involving turbulent flow, in a rod bundle of 37 pins [11], is310
the result of a large eddy simulation, illustrated in Figure 5b. This simulation was311
performed on 10 billion grid points on an unstructured mesh, and the flow is turbulent312
in the entire domain, leading to lower compression rates. The data file in this case313
was available in single precision, which is common in such types of simulations when314
compression is not available. Data stored in single precision is widely used since most315
postprocessing is done at runtime, with little need for full velocity fields. The few316
applications that may need the data for postprocessing are not as sensitive to the lack317
of accuracy induced by single-precision data.318

The third case is the canonical example of turbulent flow in a straight pipe at a319
friction Reynolds number of Reτ = 180, studied in detail in [8]. This is the smallest320
case, 36.480 elements with approximately 18 million gridpoints.321

The implementation follows Algorithm 1, or the schematic view Figure 4, by which322
we apply the DCT transform, then truncate, and compress. Note the distinction we323
make here between truncation, which is the mathematical procedure of setting to324
zero the information that is deemed redundant in the signal (i.e. above a certain325
tolerance), and compression, which is the actual bitwise encoding that removes these326
zeros from the data set.327

We defined and tested a set of tolerances in the range of 10−i with i = 1, . . . 13328
and compressed optimally based on the a priori estimator in subsection 3.4. Assessing329
the compression ratio versus loss of accuracy as in Figure 6a and Figure 7a we note330
that even in the most challenging case of fully developed turbulence, one can compress331
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(a) Flow past an airplane wing (≈ 3.2 billion gridpoints).

(b) Flow in a rod bundle (≈ 10 billion grid-
points).

(c) Flow in a pipe at Reτ = 180.

Figure 5: Velocity magnitude of different flow configurations.

more at higher or equal accuracy than by storing data in single precision. The case of332
the flow in a rod bundle for which the available data was in single precision allows for333
less compression (see Figure 7b) than its fully turbulent counterpart in (see Figure 7a).334
We attribute this difference to the noise induced in double-precision operations by the335
single-precision format.336

The use of compression is envisioned both for file restarts at a minimally necessary337
accuracy and visualizations. Nonetheless, the requirements for visualization seem to338
be low. An accuracy of 10−2, corresponding to 97% compression, is consistently suffi-339
cient for satisfactory visualizations, as illustrated in Figure 8a, Figure 8b, Figure 9a,340
and Figure 9b.341

5.3. Data Compression for Resilience. Data compression can be exploited342
beyond visualizations, because it is being used as a restart file for subsequent time343
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(a) Compression ratio (Cr) vs error: (blue) GLL
grid, (black) Chebyshev grid, (green marker)
corresponds to visualization in Figure 9b.
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(b) A priori vs a posteriori error: (blue) GLL
grid, (black) Chebyshev grid.

Figure 6: Flow past an airplane wing
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(a) Flow in a pipe: (blue) GLL grid, (black)
Chebyshev grid, (green marker) corresponds to
visualization threshold.
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(b) Flow in a rod bundle: (blue) GLL grid,
(black) Chebyshev grid, (green marker) corre-
sponds to visualization in Figure 8b.

Figure 7: Compression ratio (Cr) vs error.

-dependent computations, keeping in mind that the impact of initial conditions may344
be overarching. Lossy data compression induces a truncation error, which depending345
on the sensitivity to initial conditions may be of greater or lesser relevance. For346
example, transition to turbulence can trigger a sudden decay in kinetic energy at347
even small errors, where fully developed turbulence leads to the same statistical state348
even for larger errors. At high errors we also expect an impact on code efficiency,349
since truncations in data may lead to a higher iteration count in the algebraic solver350
for the first timesteps after restart. A full study of the impact of data loss for file351
restarts is therefore highly problem dependent.352

The a priori error estimator is the stepping stone for any restart since it is universal353
and relies only on the signal quality. To assess how well the a priori error estimator354
agrees with the a posteriori one, we have compared it in Figure 6b. Both DCT355
transforms on GLL and Chebyshev grids follow well the imposed tolerance, with a356
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(a) Compression 99%, at an error of 10−1 (b) Compression 97%, at an error of 10−2

Figure 8: Visualization retrieved at different compression ratios for flow in a rod
bundle.

smaller deviation on the Chebyshev grid. For noisy data fields, however, the estimator357
deviates a bit more; see Figure 10b, where the data was available in single-precision358
compared with double-precision fields in Figure 10a.359

If any loss in data may be detrimental to the final solution, the alternative is to360
use the compression only for visualizations, where it performs exceptionally well, and361
overwrite the checkpoints as uncompressed data at the end of every new successful362
computation.363

(a) Compression 99%, at an error of 10−1 (b) Compression 97%, at an error of 10−2

Figure 9: Visualization retrieved at different compression ratios for flow around a
wing.
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(a) Flow in a pipe: (blue) GLL grid, (black)
Chebyshev grid, (red dotted) imposed tolerance.
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(b) Flow in a rod bundle case: (blue) GLL grid,
(black) Chebyshev grid, (red dotted) imposed
tolerance.

Figure 10: A posteriori error vs imposed tolerance on a priori error estimate.
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Figure 11: I/O performance on the flow past an airplane wing case.

5.4. I/O Performance. The implementation of the I/O has been described364
in subsection 4.1. We benchmarked the I/O speeds on 1,024 Mira BG/Q nodes at365
Argonne using 65,536 processes, called compute nodes in this paper. Each Mira node366
is composed of 16 cores. Nek5000 was run with 32 processes per such node, with two367
processes per core. Every 128 Mira nodes are physically connected to one I/O node at368
4 GB/s. That 4 GB/s connection is attached to a network switch and the backbone,369
which eventually leads to the disks. System noise due to other running applications370
may prevent full usage of the 4 GB/s at the I/O node level. Thus, at 1,024 nodes we371
may expect a maximum of 32 GB/s assuming no interference with other jobs.372

The number of abstract I/O nodes in Nek5000 does not necessarily correspond to373
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Table 1: Overview of runtime parameters

Data Mira Nodes Nek I/O Nodes Nek Nodes
Uncompressed 2,048 1,024 65,536
Compressed 2,048 2,048 65,536

the number of physical I/O nodes on Mira. To determine the maximum write speed,374
we wrote data at various numbers of I/O nodes ranging from 128 to 2,048 with 10375
measurements each. The peak performance was achieved by using 1,024 I/O nodes376
for the uncompressed data and 2,048 nodes for the compressed data. The parameters377
of the runs are summarized in Table 1, and the performance is plotted in Figure 11a.378

379
The cost of writing compressed data has been at most 2, with a compression380

ratio below 0.2 compared with an uncompressed write. At a compression ratio above381
0.9 an I/O speed advantage can be observed. This would be the case mainly with382
visualization data. We expect that further optimizations in the implementation should383
lead to an I/O speed increase at lower compression ratios.384

6. Conclusions. We have implemented a scalable lossy data compression in a385
spectral-element code and controlled the data compression via an a priori error esti-386
mator. The lossy data algorithm has been inspired by the DCT transform used by the387
JPEG image compression algorithm. However, we have identified that the compres-388
sion ratio may achieve higher ratios on Chebyshev and GLL grids than on equidistant389
grids, as in image compression. Although our method has been demonstrated on fluid390
dynamics data, it is applicable to other types of data. The a priori error estimator is391
based on the L2 norm, which is a far more suitable norm for continuous scientific data392
than is the rms norm used in image compression. The algorithm has the outstanding393
performance for visualization, where it is possible to retain the same visualization394
quality using only 3% of the initial data. The compression of the data on disk is395
achieved via Huffman encoding, which leads not only to reduced sizes in data but396
also to faster I/O speeds by saturating the bandwidth at a higher speed. The imple-397
mentation of the DCT not only is flexible but also, because of the separability of the398
DCT, leads to an efficient implementation via tensor products, thereby lowering the399
computational cost for three-dimensional data from O(N6) to O(N4).400
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